Menoufia University Faculty of Engineering, Shebin El-kom Production Engineering Department First Semester Exam. 2014 - 2015 Date of Exam: 4/1/2015

Subject: Theory of Machines Code: (PRE213) Year: Second Year Time Allowed : 3 Hours Total Marks: 100 marks

(4 Marks)

(22 Marks)

Assume any required data and illustrate the answer by net sketches.

Answer the following questions:

Question 1 (50 Marks):

Data: Fig. (1) and Fig. (2). **Required:**

- 1. Illustrate and define R_n , θ_n , γ or ϕ on each figure.
- 2. Find N_f , T_R , R_2 , S_t of B, γ or ϕ and name for each figure. (6 Marks)
- 3. Determine S_t of D (Fig. 1) and at $\theta_2 = 0$. Find T_d due to F_{id}.
- 4. Compute F_t (Fig. 2) considering $S_i = 2$ cm, K = 5 N/cm, $F_e = 1.5$ N, $F_w = 2$ N. Is separation phenomenon is existed? Why? (18 Marks)

Question 2 (20 Marks):

A reverted epicyclic gear train for a hoist block is shown in Fig. 1. The arm E is keyed to the same shaft as the load drum and the wheel A is keyed to a second shaft which carries a chain wheel, the chain being operated by hand. The two shafts have common axis but can rotate independently. The wheels B and C are compound and rotate together on a pin carried at the end of arm E. The wheel D has internal teeth and is fixed to the outer casing of the block so that it does not rotate. The wheels A and Bhave 16 and 36 teeth respectively with a module of 3 mm. The wheels C and D have a module of 4 mm. **Find:**

- The number of teeth on wheels C and D when the speed of A is ten times the speed of arm E, both rotating in the same sense. (15 Marks)
- The speed of wheel D when the wheel A is fixed and the arm E rotates at 450 rpm anticlockwise. (5 Marks)

Question 3 (30 Marks):

A multi-cylinder engine is to run at a speed of 600 rpm. On drawing the turning moment diagram to a scale of 1 mm = 250 N-m and 1 mm = 3°, the areas above and below the mean torque line in mm² are : + 160, -172, + 168, - 191, + 197, - 162. The speed is to be kept within $\pm 1\%$ of the mean speed of the engine. The density of the cast iron is 7250 kg/m³ and its hoop stress is 6 Mega Pascal. Assume that the rim contributes 92% of the flywheel effect.

Calculate:

- 1. Moment of inertia of the flywheel (I).
- 2. Mean diameter of the flywheel. (D)
- 3. Mass of the flywheel rim. (m)
- 4. The suitable dimensions of a rectangular flywheel rim if the breadth is twice its thickness. (b and t) (5 Marks)

Best Wishes

(10 Marks)

(10 Marks)

(5 Marks)