Menoufia University

Faculty of Engineering, Shebin El-kom
Production Engineering Department
First Semester Exam. 2014-2015
Date of Exam: 4/1/2015

Subject: Theory of Machines
Code: (PRE213)
Year: Second Year
Time Allowed : 3 Hours
Total Marks: 100 marks

Assume any required data and illustrate the answer by net sketches.
Answer the following questions:

Ouestion 1 (50 Marks):

Data: Fig. (1) and Fig. (2).

Required:

1. Illustrate and define $R_{n}, \theta_{n}, \gamma$ or ϕ on each figure.
(4 Marks)
2. Find $N_{f}, T_{R}, R_{2}, S_{t}$ of B, γ or ϕ and name for each figure.
(6 Marks)
3. Determine S_{t} of D (Fig. 1) and at $\theta_{2}=0$. Find T_{d} due to $F_{i d}$.
4. Compute F_{t} (Fig. 2) considering $\mathrm{S}_{\mathrm{i}}=2 \mathrm{~cm}, \mathrm{~K}=5 \mathrm{~N} / \mathrm{cm}, \mathrm{F}_{\mathrm{e}}=1.5 \mathrm{~N}, \mathrm{~F}_{\mathrm{w}}=2 \mathrm{~N}$.

Is separation phenomenon is existed? Why?
(18 Marks)

بَ

Question 2 (20 Marks):

A reverted epicyclic gear train for a hoist block is shown in Fig. 1. The arm E is keyed to the same shaft as the load drum and the wheel A is keyed to a second shaft which carries a chain wheel, the chain being operated by hand. The two shafts have common axis but can rotate independently. The wheels B and C are compound and rotate together on a pin carried at the end of arm E. The wheel D has internal teeth and is fixed to the outer casing of the block so that it does not rotate. The wheels A and B have 16 and 36 teeth respectively with a module of 3 mm . The wheels C and D have a module of 4 mm .
Find:

- The number of teeth on wheels C and D when the speed of A is ten times the speed of arm E, both rotating in the same sense.
(15 Marks)

- The speed of wheel D when the wheel A is fixed and the arm E rotates at 450 rpm anticlockwise.

Question 3 (30 Marks):

A multi-cylinder engine is to run at a speed of 600 rpm . On drawing the turning moment diagram to a scale of $1 \mathrm{~mm}=250 \mathrm{~N}-\mathrm{m}$ and $1 \mathrm{~mm}=3^{\circ}$, the areas above and below the mean torque line in mm^{2} are : $+160,-172,+168,-191,+197,-162$. The speed is to be kept within $\pm 1 \%$ of the mean speed of the engine. The density of the cast iron is $7250 \mathrm{~kg} / \mathrm{m}^{3}$ and its hoop stress is 6 Mega Pascal. Assume that the rim contributes 92% of the flywheel effect.

Calculate:

1. Moment of inertia of the flywheel (I).
2. Mean diameter of the flywheel. (D)
3. Mass of the flywheel rim. (m)
4. The suitable dimensions of a rectangular flywheel rim if the breadth is twice its thickness. (b and t)
